Biological Activities of Silver Nanoparticles against Gram-negative and Gram-Positive Bacteria

Sorour Khalil Mohsen (1) , Abdul Wahab Ghaleb Waheeb (2) , Zahraa Abd El Jalil Hammoud Warur (3) , Tuqa moaied Faleh (4) , Awab Ekab Hawar (5) , ZAHRAA ABDUL HUSSEIN NAZZAL (6) , Raneen Hussein Qazi (7) , Abbas Sabar Maziri (8) , Sarah Adel Qasim (9) , Raghad Qutaba Hmod (10)
(1) Baghdad University, College of Science for Women, Department of chemistry , Iraq , Iraq
(2) Dhi Qar University/College of Science, Iraq , Iraq
(3) University of Baghdad, College of science for women, Iraq , Iraq
(4) Dhi Qar University, College of Science/Department of Chemistry, Iraq , Iraq
(5) Mosul University : College of science / Department of chemistry, Iraq , Iraq
(6) Dhi Qar University, College of Science/Department of Chemistry, Iraq , Iraq
(7) Dhi Qar University/College of Science/Department of Chemistry, Iraq , Iraq
(8) Dhi Qar University/College of Science/Department of Chemistry, Iraq , Iraq
(9) Dhi Qar University/College of Science, Iraq , Iraq
(10) Samarra University / College of Science / Applied Chemistry, Iraq , Iraq

Abstract

       In the past two decades, nanotechnology and secondary particle research have become one of the most important areas in modern materials science research, attracting great interest in the fields of electronics, biology, solar energy conversion. Catalysis medicine and water treatment due to the distinctive properties of secondary particles.Among the noble metals, we find that silver (Ag) is the preferred metal in the field of biological systems, living organisms, and medicine. Humans have known its medicinal properties for two thousand years 11-13, and it has been used as antibacterial agents since the nineteenth century, and its uses have now diversified to include many  New physical, chemical and biological specializations. Ag-NPs are one of the most widespread silver nanoparticles, with about 500 tons of annual global production .The demand for secondary story particles (Ag - NPS) is increasing in abundance to be used in many applications Fields such as medicine, pharmacy, companies, healthcare, food, cosmetics, etc. Considering their various properties (physical, chemical, and biological), they can be exploited for different purposes. There are many ways to prepare Ag-NPs, including physical, chemical, and biological.Although there are many types of nanomaterials, Ag-NPs have proven to be the most effective for their resistance to microbes, bacteria, fungi, viruses, and other microorganisms. On the other hand, we find that the biosynthesis of  secondary silver particles, has become an emerging branch of nanotechnology, as microorganisms and plant extracts have recently been used in the synthesis of nanoparticles because they are rich in biologically active compounds.

Full text article

Generated from XML file

References

- Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles-a review. Tropical journal of pharmaceutical research, 5(1), 561-573.‏

- Bhushan, B. (2017). Introduction to nanotechnology. In Springer handbook of nanotechnology (pp. 1-19). Springer, Berlin, Heidelberg.‏

- Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature reviews cancer, 5(3), 161-171.‏

- Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., … & Wagner, S. (2018). Nanoparticles in the environment: where do we come from, where do we go to?. Environmental Sciences Europe, 30(1), 1-17.‏

- Mayes A. K., Hamida E. S., & Hanaa A. A. (2019). Adsorption of Albumin and Creatinine on ZnO Nanoparticles. International Journal of Pharmaceutical Quality Assurance, 10(04), 689-695.

- Shaker, M. A., & Shaaban, M. I. (2017). Synthesis of silver nanoparticles with antimicrobial and anti-adherence activities against multidrug-resistant isolates from Acinetobacter baumannii. Journal of Taibah University medical sciences, 12(4), 291-297.

- Al-Zahrani, S. S. (2019). Silver nanoparticles (AgNPs) from plant extracts .Journal of Natural Sciences, Life and Applied Sciences, 3(2) , 95-70.

- Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., … & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine, 3(1), 95-101.‏

- Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.‏

- Abou El-Nour, K. M., Eftaiha, A. A., Al-Warthan, A., & Ammar, R. A. (2010). Synthesis and applications of silver nanoparticles. Arabian journal of chemistry, 3(3), 135-140.‏

- Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 27(1), 76-83.‏

- Yu, S. J., Yin, Y. G., & Liu, J. F. (2013). Silver nanoparticles in the environment. Environmental Science: Processes & Impacts, 15(1), 78-92.‏

- Zeljka Djurdjevic, Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments" Journal of Biomaterials Applications, February 20, 2018 Research Article

- Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MNB (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9(1):244-271.doi: 10.3390/ijerph9010244CrossRefGoogle Scholar

- Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339- 354,

-Gurav A.S., Kodas T.T., Wang L.M., Kauppinen E.I., Joutsensaari J. Generation of nanometer-size fullerene particles via vapor condensation. Chem. Phys. Lett. 1994;218:304–308. doi: 10.1016/0009-2614(93)E1491-X. [CrossRef] [Google Scholar]

-Kruis F.E., Fissan H., Rellinghaus B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B. 2000;69:329–334. doi: 10.1016/S0921-5107(99)00298-6. [CrossRef] [Google Scholar]

-Magnusson M.H., Deppert K., Malm J.O., Bovin J.O., Samuelson L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 1999;12:45–48. doi: 10.1016/S0965-9773(99)00063-X. [CrossRef] [Google Scholar]

- Schmidt-Ott A. New approaches to in situ characterization of ultrafine agglomerates. J. Aerosol Sci. 1988;19:553–563. doi: 10.1016/0021-8502(88)90207-8. [CrossRef] [Google Scholar]

- Singh, J.; Kaurav, N.; Choudhary, K.K.; Okram, G.S. Synthesis and optical properties of silver nanoparticles and arrays. AIP Conf. Proc. 2015, 1670, 1221-1231.

-Hamouda, R.A.; Hussein, M.H.; Abo-elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 1-17. [Cross Ref]

- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol, 2016, 7, 1831. [Cross Ref]

- Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C.; Mulfinger, L. Synthesis and study of silver nanoparticles. J. Chem. Educ. 2007, 84, 322-325.

-Kumar, S.V.; Bafana, A.P.; Pawar, P.; Rahman, A.; Dahoumane, S.A.; Jeffryes, C.S. High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology. Sci. Rep. 2018, 8, 1-10.

-Ho, C.H.; Thiel, M.; Celik, S.; Odermatt, E.K.; Berndt, I.; Thomann, R.; Tiller, J.C. Conventional and microwave-assisted synthesis of hyperbranched and highly branched polylysine towards amphiphilic core-shell nanocontainers for metal nanoparticles. Polymer 2012, 53, 4623-4630. [Cross Ref]

- Cao, H. Silver Nanoparticles for Antibacterial Devices: Biocompatibility and Toxicity; CRC Press: Shanghai, China,2017.

-Javaid, A.; Oloketuyi, S.; Khan, M.M.; Khan, F. Diversity of Bacterial Synthesis of Silver Nanoparticles. Bionanoscience 2018, 8, 43-58. [Cross Ref]

-Haefeli, C.; Franklin, C.; Hardy, K. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J. Bacteriol. 1984, 158, 389-392. [Cross Ref] [PubMed]

-Gan, S.-L., Zhang, L.; Zhang, S.; He, Y.; Tian, S.; Biosynthesis, Y.; Gan, L.; Zhang, S.; Zhang, Y.; He, S.; et al. Characterization and antimicrobial activity of silver nanoparticles by a halotolerant B. endophyticus. Prep. Biochem. Biotechnol. 2018, 48, 582-588. [CrossRef]

- Jang, E.Y.; Son, YJ.; Park, S.Y.; Yoo, J.Y.; Cho, Y.N.; Jeong, S.Y.; Liu, S.M.; Son, H.J. Improved biosynthesis of silver nanoparticles using keratinase from Stenotrophomonas maltophilia R13: Reaction optimization, structural characterization, and biomedical activity. Bioprocess Biosyst. Eng. 2018, 41, 381-393. [Cross Ref]

-Elsayed, M.A.; Othman, A.M.; Hassan, M.M.; Elshafei, A.M. Optimization of silver nanoparticles biosynthesis mediated by Aspergillus niger NRC1731 through application of statistical methods: Enhancement and characterization. 3 Biotech. 2018, 8, 132. [CrossRef]

-Bouafia, A., Laouini, S. E., Ahmed, A. S., Soldatov, A. V., Algarni, H., Feng Chong, K., & Ali, G. A. (2021). The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. Nanomaterials, 11(9), 2318.

-Mikhailov, O. V., & Mikhailova, E. O. (2019). Elemental silver nanoparticles: Biosynthesis and bio applications. Materials, 12(19), 3177.

- Chaudhary, R., Nawaz, K., Khan, A. K., Hano, C., Abbasi, B. H., & Anjum, S. (2020). An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules, 10(11), 1498.

-Rajkumar, R., Ezhumalai, G., & Gnanadesigan, M. (2021). A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environmental Technology & Innovation, 21, 101282.

- Khan, A.U., Khan, M., Malik, N., Cho, M.H., & Khan M.M. (2019). Recent progress ofalgae and blue-green algae-assisted synthesis of gold nanoparticles forvarious applications. Bioprocess Biosyst Eng 42(1):1-15.

-Baltazar-Encarnación, E., Escárcega-González, C. E., Vasto- Anzaldo, X. G., Cantú-Cárdenas, M. E., & Morones-Ramírez, J. R. (2019). Silver nanoparticles synthesized through green methods using Escherichia coli top 10 (Ec-Ts) growth culture medium exhibit antimicrobial properties against nongrowing bacterial strains. Journal of Nanomaterials, 2019.

-Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5(4), 499-504.

-Rahman, A., Kumar, S., & Nawaz, T. (2020). Biosynthesis of Nanomaterials Using Algae. Microalgae Cultivation Biofuels Prod Elsevier Inc.

- Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10(20), 8996.

- Sanpui P., Murugadoss A., Prasad P.V., Ghosh S.S., Chattopadhyay A. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int. J. Food Microbiol. 2008;124:142–146. doi: 10.1016/j.ijfoodmicro.2008.03.004. [PubMed] [CrossRef] [Google Scholar]

- Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001. [PubMed] [CrossRef] [Google Scholar]

-Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3:168–171. doi: 10.1016/j.nano.2007.02.001. [PubMed] [CrossRef] [Google Scholar]

-Tiyaboonchai W. Chitosan nanoparticles: A promising system for drثug delivery. Naresuan Univ. J. 2003;11:51–66. [Google Scholar]

-Baker C., Pradhan A., Pakstis L., Pochan D.J., Shah S.I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005;5:244–249. doi: 10.1166/jnn.2005.034. [PubMed] [CrossRef] [Google Scholar]

-Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International journal of molecular sciences, 20(2), 449.

- Li, L., Li, L., Zhou, X., Yu, Y., Li, Z., Zuo, D., & Wu, Y. (2019). Silver nanoparticles induce protective autophagy via Ca2+/CaMKKB/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology, 13(3), 369-391.

-Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram- negative bacteria. Journal of colloid and interface science, 275(1), 177-182.

- Gurunathan S., Park J.H., Han J.W., Kim J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomed. 2015;10:4203–4222.

- Li W.R., Xie X.B., Shi Q.S., Zeng H.Y., Ou-Yang Y.S., Chen Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010;8:1115–1122.

-Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Renu P., Ajaykumar P.V., Alam M., Kumar R., et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1:515–519.

Authors

Sorour Khalil Mohsen
Abdul Wahab Ghaleb Waheeb
Zahraa Abd El Jalil Hammoud Warur
Tuqa moaied Faleh
Awab Ekab Hawar
ZAHRAA ABDUL HUSSEIN NAZZAL
Raneen Hussein Qazi
Abbas Sabar Maziri
Sarah Adel Qasim
Raghad Qutaba Hmod
Mohsen , S. K., Waheeb , A. W. G. ., Hammoud Warur , Z. A. E. J. ., Faleh , T. moaied ., Hawar , A. E. ., HUSSEIN NAZZAL , Z. A. ., Qazi , R. H., Maziri , A. S. ., Qasim , S. A. ., & Hmod , R. Q. . (2024). Biological Activities of Silver Nanoparticles against Gram-negative and Gram-Positive Bacteria. Journal of Current Medical Research and Opinion, 7(04), 2310–2319. https://doi.org/10.52845/CMRO/2024/7-4-15

Article Details