Developments in the Analysis of Biological Volatile Organic Compounds: Breast cancer and Cystic Fibrosis Using Gas Chromatography-Mass Spectrometry

Russell Karim Wadi (1) , Sarah Jassim Nassif (2) , Naba Zuhair Anwar (3) , Zainab Ali Jalal (4) , Ghufran Muhammad Farhan (5)
(1) Chemistry Sciences, University of Baghdad, Iraq. , Iraq
(2) Chemistry Sciences, University of Baghdad, Iraq. , Iraq
(3) Chemical Sciences, University of Baghdad, Iraq. , Iraq
(4) Chemistry Sciences, University of Baghdad, Iraq. , Iran, Islamic Republic of
(5) Chemistry Sciences, University of Baghdad, Iraq. , Iraq

Abstract

The technique of gas chromatography-mass spectrometry (GC-MS)-based metabolomics is highly suitable for the identification and quantification of small molecular metabolites (with a molecular weight of less than 650 daltons). These metabolites encompass small acids, alcohols, hydroxyl acids, amino acids, sugars, fatty acids, sterols, catecholamines, drugs, and toxins. In order to make these compounds volatile enough for gas chromatography, chemical derivatization is frequently employed. The purpose of this unit is to demonstrate that GC-MS-based metabolomics makes it possible to simply integrate targeted tests for absolute quantification of certain metabolites with untargeted metabolomics in order to find novel substances. GC-MS is able to detect and semi-quantify approximately 200 substances per study in human body fluids (such as plasma, urine, or stool) samples. This capability is complemented by database annotations that make use of huge spectral libraries and validated, standardised standard operating procedures. Similar to liquid chromatography-mass spectrometry (LC-MS) untargeted profiling, deconvolution software enables the detection of more than 300 extra unidentified signals. These signals can be annotated by using precise mass instruments and proper data processing methods. Because of this, gas chromatography-mass spectrometry (GC-MS) is a well-established technique that not only makes use of traditional detectors (quadrupole), but also target mass spectrometers (triple quadrupole) and accurate mass instruments (quadrupole-time of flight).

Full text article

Generated from XML file

References

Niehaus TD, Nguyen TND, Gidda SK, ElBadawi-Sidhu M, Lambrecht JA, McCarty DR, Downs DM, Cooper AJL, Fiehn O, Mullen RT. Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids. The Plant Cell Online. 2014;26:3010–3022.

Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal. 2000;23:131–142.

Skogerson K, Wohlgemuth G, Barupal DK, Fiehn O. The volatile compound BinBase mass spectral database. BMC bioinformatics. 2011;12:321.

Altomare, D. F., Di Lena, M., Porcelli, F., Trizio, L., Travaglio, E., Tutino, M., et al. (2013). Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 100, 144–150.

Beale, D. J., Jones, O. A. H., Karpe, A. V., Dayalan, S., Oh, D. Y., Kouremenos, K. A., et al. (2016). A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. Int. J. Mol. Sci. 18, 24.

Fortes, P. R., Petruci, J. F. S., and Raimundo, I. M., Jr. (2017). Optical gas sensors for exhaled breath analysis. SPIE Press.

Cazzola, M., Segreti, A., Capuano, R., Bergamini, A., Martinelli, E., Calzetta, L., et al. (2015). Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Res. Pract. 1, 7.

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3, 211–221.

Kuruvilla, M. E., Lee, F. E. H., and Lee, G. B. (2019). Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol. 56, 219–233.

Tang, Z., Liu, Y., and Duan, Y. (2015). Breath analysis: technical developments and challenges in the monitoring of human exposure to volatile organic compounds. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1002, 285–299.

Dudzik, D., Barbas-Bernardos, C., García, A., and Barbas, C. (2018). Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J. Pharm. Biomed. Anal. 147, 149–173.

Fowler, S. J., Basanta-Sanchez, M., Xu, Y., Goodacre, R., and Dark, P. M. (2015). Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax 70, 320–325.

Kuo, T. C., Tan, C. E., Wang, S. Y., Lin, O. A., Su, B. H., Hsu, M. T., et al. (2020). Human breathomics database. Database (Oxford) 2020, baz139.

Lawal, O., Ahmed, W. M., Nijsen, T. M. E., Goodacre, R., and Fowler, S. J. (2017). Exhaled breath analysis: a review of “breath-taking” methods for off-line analysis. Metabolomics 13, 110.

Bayrakli, I., Öztürk, Ö., and Akman, H. (2016). Investigation of acetone, butanol and carbon dioxide as new breath biomarkers for convenient and noninvasive diagnosis of obstructive sleep apnea syndrome. Biomed. Chromatogr. 30, 1890–1899.

Chen, S., Mahadevan, V., and Zieve, L. (1970). Volatile fatty acids in the breath of patients with cirrhosis of the liver. J. Lab. Clin. Med. 75, 622–627.

Furge, L. L., and Guengerich, F. P. (2006). Cytochrome P450 enzymes in drug metabolism and chemical toxicology: an introduction. Biochem. Mol. Biol. Educ. 34, 66–74.

Basanta, M., Koimtzis, T., Singh, D., Wilson, I., and Thomas, C. L. P. (2007). An adaptive breath sampler for use with human subjects with an impaired respiratory function. Analyst 132, 153–163.

Netzker, T., Shepherdson, E. M. F., Zambri, M. P., and Elliot, M. A. (2020). Bacterial volatile compounds: functions in communication, cooperation, and competition. Annu. Rev. Microbiol. 74, 409–430.

Hirschey M.D., DeBerardinis R.J., Diehl A.M.E., Drew J.E., Frezza C., Green M.F., Jones L.W., Ko Y.H., Le A., Lea M.A., et al. Dysregulated metabolism contributes to oncogenesis. Semin. Cancer Biol. 2015;35:S129–S150.

Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 2009;324:1029–1033.

Jové M., Collado R., Quiles J.L., Ramírez-Tortosa M.C., Sol J., Ruiz-Sanjuan M., Fernandez M., de la Torre Cabrera C., Ramírez-Tortosa C., Granados-Principal S., et al. A plasma metabolomic signature discloses human breast cancer. Oncotarget. 2017;8:19522–19533.

Jasbi P., Wang D., Cheng S.L., Fei Q., Cui J.Y., Liu L., Wei Y., Raftery D., Gu H. Breast cancer detection using targeted plasma metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019;1105:26–37.

Wang X., Zhao X., Chou J., Yu J., Yang T., Liu L., Zhang F. Taurine, glutamic acid and ethylmalonic acid as important metabolites for detecting human breast cancer based on the targeted metabolomics. Cancer Biomark. 2018;23:255–268.

Shen J., Yan L., Liu S., Ambrosone C.B., Zhao H. Plasma metabolomic profiles in breast cancer patients and healthy controls: By race and tumor receptor subtypes. Transl. Oncol. 2013;6:757–765. doi: 10.1593/tlo.13619.

Dougan M.M., Li Y., Chu L.W., Haile R.W., Whittemore A.S., Han S.S., Moore S.C., Sampson J.N., Andrulis I.L., John E.M., et al. Metabolomic profiles in breast cancer:a pilot case-control study in the breast cancer family registry. BMC Cancer. 2018;18:532.

Ferkol T, Rosenfeld M, Milla CE. Cystic fibrosis pulmonary exacerbations. J Pediatr. (2006) 148:259–64.

Shoki AH, Mayer-Hamblett N, Wilcox PG, Sin DD, Quon BS. Systematic review of blood biomarkers in cystic fibrosis pulmonary exacerbations. Chest. (2013) 144:1659–70.

Servetnyk, Z., Krjukova, J., Gaston, B., Zaman, K., Hjelte, L., Roomans, G. M., and Dragomir, A. (2006) Respir. Res. 7, 124 44. Hudson, V. M. (2004) Treat. Respir. Med. 3, 353–363

Hudson, V. M. (2001) Free Radic. Biol. Med. 30, 1440–1461

Gao, L., Kim, K. J., Yankaskas, J. R., and Forman, H. J. (1999) Am. J. Physiol. Lung Cell. Mol. Physiol. 277, L113–L118

Roum, J. H., Buhl, R., McElvaney, N. G., Borok, Z., and Crystal, R. G. (1993) J. Appl. Physiol. 75, 2419–2424

Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., and Hammond, C. L. (2009) Biol. Chem. 390, 191–214

Li, C., Krishnamurthy, P. C., Penmatsa, H., Marrs, K. L., Wang, X. Q., Zaccolo, M., Jalink, K., Li, M., Nelson, D. J., Schuetz, J. D., and Naren, A. P. (2007) Cell 131, 940–951

Day, B. J., van Heeckeren, A. M., Min, E., and Velsor, L. W. (2004) Infect. Immun. 72, 2045–2051

Tirouvanziam, R., Conrad, C. K., Bottiglieri, T., Herzenberg, L. A., Moss, R. B., and Herzenberg, L. A. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 4628–4633

Ciofu, O., Riis, B., Pressler, T., Poulsen, H. E., and Høiby, N. (2005) Antimicrob. Agents Chemother. 49, 2276–2282

Visca, A., Bishop, C. T., Hilton, S. C., and Hudson, V. M. (2008) J. Cyst. Fibros. 7, 433–436

Bishop, C., Hudson, V. M., Hilton, S. C., and Wilde, C. (2005) Chest 127, 308–317

Dauletbaev, N., Fischer, P., Aulbach, B., Gross, J., Kusche, W., ThyroffFriesinger, U., Wagner, T. O., and Bargon, J. (2009) Eur. J. Med. Res. 14, 352–358.

Authors

Russell Karim Wadi
Sarah Jassim Nassif
Naba Zuhair Anwar
Zainab Ali Jalal
Ghufran Muhammad Farhan
Wadi, R. K. ., Nassif, S. J. ., Anwar, N. Z. ., Jalal, Z. A., & Farhan, G. M. (2024). Developments in the Analysis of Biological Volatile Organic Compounds: Breast cancer and Cystic Fibrosis Using Gas Chromatography-Mass Spectrometry. Journal of Current Medical Research and Opinion, 7(04), 2250–2263. https://doi.org/10.52845/CMRO/2024/7-4-5

Article Details